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ABSTRACT

In addition to its intrinsic practical importance,
nonlinear time delayed feedback control applied to
lifting surfaces can result in interesting aeroelastic
behaviors. In this paper, nonlinear aeroelastic response
to external time-dependent loads and stability boundary
for actively controlled lifting surfaces, in an
incompressible flow field, are considered. The structural
model and the unsteady aerodynamics are considered
linear. The implications of the presence of time delays
in the linear/nonlinear feedback control and of
geometrical parameters on the aeroelasticity of lifting

surfaces are analyzed and conclusions on their
implications are highlighted.
NOMENCLATURE
a Dimensionless elastic axis position measured
from the mid-chord, positive aft
Semi-chord

¢,k Damping and stiffness parameters of 1-DOF

plunging airfoil, respectively

Cj»Cq > Damping parameters in plunging, pitching
and flapping, respectively

C(s) Theodorsen's function

CLa

e Dimensionless leading edge flap position
measured from the mid-chord, positive aft

F, ,F, Aerodynamic and time-dependent load vectors

F

c

Lift-curve slope, 27

Control force
gy -8y, 8ne Proportional, velocity and nonlinear

feedback control gains matrix
g,-8v>8nc39,-9,,9, Proportional, velocity and

nonlinear feedback control gains of 1-DOF
airfoil, and their dimensionless counterparts,
respectively

G  Control input matrix

" Visiting Assistant Professor, Department of Engineering Science
and Mechanics, Member AIAA.

' Professor of Aeronautical and Mechanical Engineering,

Department of Engineering Science and Mechanics.

Senior Research Scientist, Senior Aerospace Engineer,

Aeroelasticity Branch, Structures and Materials Competency,

Senior Member AIAA.

h,a, f Plunging, pitching and flap displacements,
respectively
1, .15 Mass moment of inertia per unit length of the

wing-flap and of the flap about the elastic axis,
and about the flap axis of rotation, respectively
ky.ky kg Stiffness parameters in plunging;

torsional stiffnesses of the wing and flap about
the elastic axis, and about the flap axis of
rotation, respectively

k  Reduced frequency, wb/U.,,

L,,L,,L. Aerodynamic lift, time-dependent external
load, active feedback control, respectively

m , i Mass of the wing per unit of length and mass
ratio, (E m/ 2p.,b° ), respectively

M ,K,B Structural matrices,

M, .K, ,B, Aerodynamic matrices

7, »1p Dimensionless radii of gyration of the wing-flap,

(]a /mb2)1/2 , and of the flap, (Iﬁ/mbz)]/Z ’

respectively
s Laplace transform variable

S, » ¥4 Static unbalance about the elastic axis and its
dimensionless counterpart, S, /mb

Sz, x s Static unbalance about the flap axis of rotation
and its dimensionless counterpart, S ; /mb

t,o0 ;7 Time and dummy time variables, respectively;
dimensionless time variable, tU_, /b

T;  Theodorsen’s constants

U, ,VFreestream speed and its dimensionless
counterpart V =U,, /w,b, respectively.

X Plunging, pitching and flap displacement vector

$¢ 58y 6 p Structural damping ratios in plunging
(=c,/2mw,), pitching (= ¢, /21,0, ), and
flapping (E cp 20504 ), respectively

¢, a Plunging and pitching displacement quantities

P, Air density

t;,7; Time delay and dimensionless time delays,

tU, /b i= 1,4, respectively
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#(r) Wagner’s function

oy, ,®, 05 Uncoupled frequencies in plunging,
(k, /m)"'*, pitching, (k, /I,)""* ,and flapping
(k 5/1s )”2 , Tespectively

INTRODUCTION

ast and recent literature on aeroelasticity is mostly

devoted to linear models and to harmonic solutions.
Often experimental results are interpreted by assuming a
linear behavior of the physical model. Recently, special
emphasis has been placed on the role of nonlinearities
on aeroelastic instabilities, and for the most part, these
studies have focused on the qualitative nonlinear
behavior of open loop aeroelastic systems. Still, it is
rather accurate to say that currently there is a lack of
research work on closed loop dynamics of aeroelastic
systems. The nonlinear aspects that we are addressing in
this research are those which arise in the description of
the feedback delayed control.
This study can lead to new qualitative results in the
areas of flutter instability boundary and aeroelastic
response to gust and blast loadings.
As a bottom line, it is imperative that the occurrence of
flutter phenomena be suppressed, as to avoid the
catastrophic failure of the structure [1]. These facts
emphasize the importance of developing proper
methodologies for the active control of structural
systems, enabling one to raise the flutter speed, to
enhance the aeroelastic response (attenuating excessive
vibrations), and convert the unstable LCO, in which
case the flutter boundary is catastrophic, into a stable
LCO, for which case the flutter boundary is benign.
The determination of the stability boundary of
linear/nonlinear actively controlled aeroelastic systems,
where the presence of the unavoidable time delays
between controller and actuators is included, constitutes
an important practical problem. In fact, the actuators
may input energy at the exact moment when the
controlled system does not need it [2-4]. These delays
can be very detrimental in the sense of deteriorating the
control performance and can even cause irregular
motions, producing instability of the aeroelastic system.
However, there are cases where those delays are used to
control chaotic motions [5].
For a better understanding of the challenging problem
related to the nonlinear delayed feedback control, the
model of a 2-D wing section was considered and its
effect on the aeroelastic response and flutter has been
investigated.
The methodology used in this work is based on Volterra
series and indicial functions in conjunction with a
feedback control [1]. Volterra’s functional series
technique was proven to be an efficient tool in the

solution of various nonlinear aeroelastic problems [4].
The Volterra series approach can also be used toward
the formulation of the stability criteria for systems
featuring time delays.

BACKGROUND

The problem of controlling unstable motion is an
important subject in aeroelasticity. The renewed interest
of aeroelasticians in this subject started, however, with
the observation that a large number of unstable periodic
orbits, (limit cycle oscillations LCO), embedded in
chaotic attractors can be stabilized by weak external
forces.

Two main methods for controlling unstable motions
have been established. The first one was developed by
Ott, Grebogi, and Yorke [6]. This method, based on the
invariant manifold structure of unstable orbits, is
theoretically well understood, but since it is difficult to
apply to fast experimental systems, it has a limited
interest. Another approach is due to Pyragas [7]. This
method uses time-delayed controlling forces; it can
easily be applied to real experimental situations, but so
far the control mechanism has been poorly understood
from a theoretical point of view. Considerable research
has been done for more than three decades on various
aspects of dynamical systems with delayed factors in the
state variables and/or control inputs [8-12].

Various stability criteria and numerical approaches have
been presented in recent years, see [13-14] and
references cited therein. Consequently, time-delayed
feedback has been applied widely [3,15-17]. In Ref. [8]
an investigation of the stability and chaos for wheel
suspensions was presented.

For aeroelastic systems in Ref. [5] the time-delayed
feedback was applied toward the control of the chaotic
motion of a 2-D lifting surface, with cubic pitching
stiffness and linear viscous damping, using the feedback
control method of Pyragas [7].

Stability analysis has been conducted in Ref. [2] for a
linear, damped SDOF system with time delays in the
displacement and in the velocity feedback.

With the exception of [5], the use of time-delayed
feedback in aeroelasticity has been very limited. This is
due to the fact that the characteristic equation of the
delayed system is transcendental, i.e. has infinite
number of roots, so it is neither possible to solve for its
roots, nor to easily find approximate solutions [2,12].
Moreover, the aeroservoelastic problem is extremely
complex. For this reason, as a first step toward the
nonlinear analysis, the stability of linear differential-
difference aeroelastic equations has to be studied [3].
The present study can provide broad information and
answer some basic questions, such as whether the
aeroelastic stability is affected by the presence of delays
that appear in the feedback, and whether the system
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stability is robust with respect to small variations of the

feedback gains.
As reported in [4], multiple degree-of-freedom
aeroelastic  systems, including  structural and

aerodynamic nonlinearities, can be investigated via a
combined Volterra series [18,19] and Indicial functions
technique [1,4]. Originally, the methods of Volterra
series and Volterra kernel identification were developed
to identify the nonlinear behavior in electrical circuits
[19]. In [1] Volterra’s series approach has been applied
to the open/closed-loop aeroelasticity of airfoils. It was
shown that the method provides opportunities for
developing a unified and efficient way to address
problems of nonlinear aeroelasticity. By performing an
analytical linear stability analysis of the aeroelastic
system via the use of the first order Volterra kernel, it is
determined which class of orbits is accessible to time-
delayed feedback control methods. Explicit expressions
for important quantities like the critical time-delays and
control gains or the dependence of the transient
behavior on the control parameters, are derived. In this
paper the stability boundary of a reduced order open/
closed-loop aeroelastic system incorporating a nonlinear
time delayed feedback control is presented. The goals of
designing such a system consist of controlling the
aeroelastic response behavior, increasing the flutter
speed and converting the catastrophic flutter boundary
into a benign one.

ANALYTICAL DEVELOPMENTS

The first step towards the modeling of an open/closed-
loop aeroelastic system with nonlinear time delayed
feedback control via the Volterra series approach is to
determine the aeroelastic kernels. For the purpose of the
present analysis, the approach presented in Refs. [1,4]
has been modified. The basic assumptions and a
detailed procedure are presented in Ref. [4]. For
exhaustive treatments of the Volterra series concept
applied in structural dynamics, the interested reader is
referred to Ref. [20].

The aeroelastic kernels including control effects are
derived in terms of the structural parameters, unsteady
aerodynamics, proportional (PFC) and velocity (VFC)
feedback control gains and feedback delays. Based on
these kernels, the time histories and flutter boundary of
the open/closed loop delayed aeroelastic system are
obtained. The determination for each specific flight
condition of the corresponding linear and nonlinear
kernels of the Volterra series is required [4]. The
open/closed-loop aeroelastic governing equation of an
airfoil featuring plunging-pitching-flap deflection
motion and subjected to external time-dependent loads
can be expressed as

M, x(r)+ Bx(t) + K x(t)= m ™' [F, (£) + F, (¢)]+ Gu(r) (1)

where x(7)= [h(t),a(t), ﬂ(t)]r, u(t) is the control input
(for a 3-DOF, for example, a torque applied at the flap
[21]). The unsteady aerodynamic loads are represented
by

F,(t)=M,x(t)+ B, x(t)+ K,x(t)+ F.(1) (2
The significance of the other parameters is well known,
see [22,23]. As a remark, a closed-loop system can be
seen as an open-loop system where the transfer function
includes the feedback control. In Eq. (1) the state
feedback control with delay can be expressed in the
form:

Gu(t - z') = gpx(t - r)+ gvi((t - r)+ gncx3 (t - r) 3)
where g,.8,.g,. are the feedback gain matrices for the

displacement, velocity, and the nonlinear term,
respectively. Since the aeroelastic system incorporating
feedback control forces and moments with time-delays
in the state feedback is of an evident complexity, for a
better understanding of the problem and of the present
procedure, a simplified model has been adopted.

DELAYED AEROELASTIC SYSTEM:
STABILITY AND RESPONSE

Some concepts related with the aeroelastic response and
stability of the 1-DOF plunging airfoil in the presence
of time delays between the sensing and the action of the
actuator are presented next.
A 1-DOF plunging airfoil is modeled as [1,4]:
mh(¢)+ch(e)+ kh(t)=—L,(t)+ L, (£)+ L.(t) (4)

In the right hand side of this equation, the unsteady
aerodynamic lift is represented as

L,(0)=CropU.bf' ¢(r—a)@do+§pcmb2h’ ()

w P
The non-circulatory components of the unsteady
aerodynamic load have been represented in terms of a
convolution integral of the indicial Wagner’s function
¢(T) , where the added mass is associated with the term
5

% pCrb°h.
In order to be able to highlight the implications of the
nonlinearity in the delayed control, the structural and
aerodynamic models are considered linear. In principle,
with the exception of the unavoidable computational
expense, the inclusion of these nonlinearities does not
constitute a problem. For an aeroelastic model in which
structural nonlinearities were included, see e.g. [4]. In
addition, in Eq. [4] L, (r) denotes the external time-
dependent load acting on the rigid wing counterpart and
L. (r) denotes the nonlinear feedback control force:

Lc(t):gph(t_tl)+gvh(t_t2)_gnch3(t_t3) (6)
In the present work, the proportional (PFC) and velocity
(VFQC) feedback controls have been supplemented by a
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nonlinear proportional feedback control (with delays
t5i=13).

Denoting 7=tU,/b and &=h/b,
equation of the system with the nonlinear actuator

control force with delay can be written in dimensionless
form as

— =\
&+2, 5+ (3]
Structural terms
— L v _ " _ L "
= I_w¢(r G)f do—--&
Aerodynamic terms (7)

+gp(%)2§(7_T1)+2§§gv%§'(7’_72)

Linear control terms
_ @
gnc ( )2 é

r-n3)+ L)
——
Nonlinear control term

External load
The following dimensionless parameters have been used

the governing

u=mlzpb*;V=U, ob;@ =0, o, ;0 =k/m;
Ce=c/2mo, 19, =g,/c:9, =8, k19, = 8.0 [k

Evaluation of High-Order Aeroelastic Kernels
Paralleling the procedure presented in [4], assuming a
periodic external excitation of the form:

L= X, ®

the high order kernels of the aeroelastic system can be
derived.

The identification of the n order aeroelastic kernels is
based on a general input in the form given by Eq. (8)

and on the extraction, for the generic term of  n-th
order, of the coefficients of H:;l Xe'" .
This procedure was detailed in [4], where the

expressions of the first three Volterra kernels of 2-D
lifting surfaces have been explicitly derived.
As a remark, assuming a solution of the plunging

displacement in the form &(z)=H,,, (s)X,e’" +..., the
first order kernel, H (s) characterizing the open-loop

1-DOF aeroelastic system can be represented as:

HIOL(S) = {sz +2¢; L5+ <%)2 +%[®(s)+%]s2} 1 9)
In the present case we assume that the feedback control
is represented by ,B(s); ﬂ(s) can be one of the PFC,
VFC, feedback control gains, or combinations of these
(CFC), see [1], in conjunction with a nonlinear
proportional control gain.
Based on these assumptions, the linear first Volterra
kernel of the closed loop system H (s) is given by:

HICL(S):HIOL(S)/[I"'HIOL(S)IB(S)] (10)

and is expressed explicitly as

Hi (5)= b2 +26, 25+ (2F 42 [o(s)+ £}
ro,efesasg B!

where the feedback gains are taken in absolute value.
Usually, these gains are negative in the LQG/LQR
design methodologies.

For the specific case of the 1-DOF airfoil with linear

control B(s)=g, (V) TN 428,9, Zse
From (10), when ﬂ( ):
loop, consistently H, =H . .

(11)

, 1.e. in the case of the open-

From a mathematical point of view, the closed-loop
nonlinear aeroservoelastic system, characterized by the
first HIOL(S) and third H;q; (s),5,,5;) order kernels

and by the feedback gain ﬂ(s), can be seen as an open

loop system described by the closed loop aeroelastic
kernels HICL(S), H3CL(s1,s2,s3) that are related to

the kernels of the open loop system and its control
gains. It should be mentioned that the second order
kernel of the actual system is zero by virtue of the fact
that no quadratic terms are involved in this system. To
obtain the third-order closed loop nonlinear
aeroservoelastic kernel Hj (sl,sz,s3) we assume that

the input can be expressed as Lb Z X,e"" . The

output £(z) can be written as:

()= 23 H, (5)Xe™ + Z; H,y (s;)X 7"
* Z i=1 Hl(L

+3Hs,, (51,5253 )X, X, X505 L others

X3633 T

(13)

Substituting the expression of f(z’) as given by Eq. (13)

in Eq. (7) and extracting the H; e’ term and using

the expression of H, (s;), the closed-loop third-order

aeroelastic kernel is obtained
H3CL(S1aS2aS3): 2gnc(%)zHlCL(sl )HICL(SZ)HICL(S?a)
x H1CL(51 +5, 453 )e_(s1 +sy+53

It is a general property of systems that all higher-order
kernels can be expressed in terms of the lower-order
kernels. In the absence of the quadratic term, see Eq.
(7), the second-order kernel vanishes. Therefore, only
the first and third order kernels have to be considered
toward the determination of the nonlinear aeroelastic
response and of the stability boundary.

(14)

Stability Analysis
For stability purposes, the aeroelastic system in the
absence of external excitation, L,(z)=0, is considered.

Without aerodynamic terms (that include time-lags),
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and in the absence of control (i.e. g, =g, =0), the

system is dissipative with two finite stable characteristic
roots (poles) on the left half of the complex plane.
However, for the aeroelastic system with feedback

delayed control (7, >0; j =1,2,3) the two finite stable

roots are supplemented by other finite stable roots
(whose number depends on the aerodynamic model),

and by an additional infinite number of roots due to the

presence of e°" into the characteristic equation.

The conditions that guarantee the stability of the
delayed system, have been studied by Pontryagin [10],
and applied toward the stability of time delayed
feedback control systems by several authors. In the
present aeroelastic analysis, Pontryagin’s approach [10]
in conjunction with the Stépan’s theorems [13] have
been adopted.

As proved in [12], the stability of delayed aeroelastic
systems analyzed by using the concept of Retarded
Functional Differential Equation (RFDE) depends on
the presence of zeros with positive real parts of the
characteristic equation, i.e. the presence of the p-zeros.

For the stability evaluation, Eq. (11) can be written in
characteristic equation form as:

D(s)=1/H,, (5)=0, (15a)
As a remark, in the absence of time delay, the following

relation is valid
+2[o(s)+ L)

D( )—s +2§§—s+( )

+gp(%) +2¢:9, %s =0
Since 1+1[CD(S)+
U

(15b)

%]>O, the stability conditions are
obtained by imposing g, >-1 and g, >-1.

Note that the characteristic roots (i.e. poles), of Eq.
(15a) are of the form s =a+i® . As a particular case, if
g,=9,=9, and 7 =7, the following relation holds

valid:
2 2
b+ 2lo6)+ 1 F 5 420 (5o
[1+2¢, L]
It is possible to observe that for the uncontrolled system,
g,=9,=0, the characteristic equation (15) has four

finite stable poles in the complex plane that are obtained
by solving the equation

{ M Js?+2c (L

and all remaining poles areat a=-o.For g, =g, =0,

there are poles at s=0;—1;,—82.36;—12.89 and the
remaining poles are at @ =+ .

For equal time delays, via time transformation with
respect to the delay, i.e. replacing s7 = s, Eq. (15) can
be further simplified as

g= " (16a)

+1‘ 0 (16b)

§+20, 257 +( )21'2 +£CI>(§/?)§2

+#s +gp( )2r2e +gv2§§7sre $=0
The stability of Eq. (17) will be studied via Stépan’s
analytical method [8,13]. Following this method, upon
denoting p; 2...2p, 20 and o,2...20,=0, the
non-negative real zeros of

R(@)=ReD(iw)=(-1)" 0" + O(a)”)

D(§)=3
(17)

(18a)
and

S(a))zlmD(ia)):O(a)"), (18b)
the trivial solution x =0 of the system is exponentially
asymptotically stable, if and only if R(O)> 0; n=2m
(n is the order of the system and m is integer);
S(p,)#0 for k=1,...,r and

> ) senS(op)=(=1)"m (19)

Similar conditions of stability are defined for systems
where n=2m+1, see [8]. For the present case,

replacing ®(5)§> = C(§)§7 and § = i, where C(l;)
(E F (l; )+iG(/; )) is the Theodorsen’s function, and

considering the real and imaginary parts of Eq. (17), we
obtain:

R(a)):—a)2+(‘5)2r2——a1rG(k/z')co—;a)2
+gp( )Zz'zcosco+2§§ ngz'a)sma)
S(w)= 2§§—Tw+ a)rF(k/T)

—gp( )212s1na)+2§§ % £.9,70cos®

The trivial solution of Eq. (7) is exponentially
asymptotically stable [8,23], if, and only if:

(20a)

(20b)

g,>-1 (21a)
T <2, Lg—” (21b)
g, < —(%)Z{l ()Z + Jcoso-+2§§%sino-(21c)

Z(Gcosa + Fsmo-)

Herein, o is the smallest positive zero of the equation

S(o)= 2% 270+~ O'TF
(22)
—gp( )22' smo-+2§,;ngz'O'coso 0

where o € ( ) The proof of Eq. (17) is given next.

The inequality g , > —1 is obtained from the condition:

—\2 ~ S\~
RO)=(2f 7% +g, (2] 7> >0 (23)
Considering the smallest positive root o of Eq. (20b),
one obtains that, S(w)> 0, e (0,) if and only if
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2é’§%a)+%wF—gp(%)2?sina) 04)
+2§§%gva)cosa)>0
that yields
gp(i)zr s1nw<2§¢&a)+ oF +2¢: g, twcosw (25)

Since the first two terms of Eq. (25) are always positive,
it is possible to conclude that the condition

T<2f e Lz g‘ is required. In addition, for the smallest
l’

positive root o , we can state:

R(o)=-c*+\2)7? - 267Go-Lo?
(=) Z(V)Z 2 Z (262)
+gp(%) 72 coso-+2§§%gv?0'sin0'<0

After some algebra manipulations

gp00520<|:( T)Z 1+/2‘ Z(g)ZG—i(%%f

-26(%
and using standard trigonometric relationships, Eq.
(26b) in conjunction with Eq. (25), rewritten in the form

g, sin o <pe(Le)r22(Lf F
+2§f(ﬁ?

reduces to Eq. (21c). The condition (19), where m =1,
is also fulfilled.

b sin G]COS o

27
)gvacosa]sma @7

The Aeroelastic Stability Chart

The present approach for the determination of the
stability domain of a delayed aeroelastic system has
some analogies with Theodorsen’s method used for
finding the flutter speed by plotting the real and
imaginary parts of the flutter determinant in conjunction
with consideration of a real @ . The former approach
reduces to the latter one in the case of zero time delays.
The stability chart of the aeroelastic system described in
Eq. (7) with respect to the feedback gains and the time-
delay can be constructed using Stépan’s theorem and the
D-subdivision method [12]. From the preliminary
findings it appears that the time-delays play an
important role. It is noted that the stability boundary
depends dramatically on the velocity feedback control,
especially in the case of the time delay. In addition, this
implies that, in the presence of the delays, a small
variation in the velocity feedback gain can expel the
system from a stable to an unstable domain.

HOPF-BIFURCATION ANALYSIS

Preliminary findings related to the Hopf-bifurcation
analysis of nonlinear feedback time delayed closed-loop
aeroelastic systems will be presented next.

Based on [8,24], assuming for sake of simplicity equal
time-delays 7, =7, =75 =7, expanding the nonlinear

time-delayed feedback control L, into Taylor series and

omitting the terms containing the nonlinear function of
the time-delay yields:

L(6)= ~g,7h(c)+ (g, - g,7)ie)+ g ,h(0)

+ 2,0 () 32,70 (0ile) + OF?)
As a result, the aeroelastic governing equation is
rewritten in the form
() + ch(t) + kh(e) + g, 7i(t) - (g, — g, 7 ilt) - g , )
- 8,1+ 3, AW =~C Lo ppU, | ole - )il (29
~ 5 PC b h(e)+ L, (1)

and in dimensionless form as

£424: 28 +(@fe=-2[ glc-ofdo-Le
0 g7 pra t oo Pk v, e GO

+gm( )25 _3gm( )Zré: é:

Usually the gains are negative in the LQR design, and
so are taken in absolute value. This yields the following
approximated nonlinear equation:

(1 2.9,2 r——)§ +[2§§ +2£.9,2-g (%)%Jg
+(2F(i+g, +a, 2F [ -372%¢)

+%.[;¢(r—0')§"d0' =0

(28)

€2))

Stability examination
The zero solution of Eq. (31), for the system in vacuum,
is exponentially asymptotically stable [8,24] if

g,>-1 (32a)
1—2§§gV%?>0; (32b)
24 2420,9,2-9,(Zf7>0 (32¢)
The Hopf-Bifurcation (HB) is present at
2
% fi, 0 <3z 5z 9,1 (3abo)
+ gv Vv T é/g
and it is supercritical or subcritical if g,. <0 or
0, >0, respectively. The proof, paralleling that

presented in [8] is given next.
The nonlinear Eq. (31) can be linearized about & =0

1-20.87) + e, 22007 -9, @k

+(%)2(l+gp)§:0

and its characteristic polynomial is given by
(-2¢.0,7)" +pe.F+ 200,29, 7}
+ (%)2(1 + gp):

Assuming that g, <

(34)

(35)

ok g, -1, then,

Zar and 9, =325

2( T
as a necessary requirement for the Hopf-bifurcation, we
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have the condition of a pair of pure imaginary roots of
the characteristic equation

1
51, =*iff where g = V +Sp~ - (36a,b)
(5)2 257779,
If V=0 then g= ltzg” .
Upon defining the new variables y, =& and

v, =¢&'/ B the Poincaré normal form is obtained:

I VS P
V2 -8 0 |» S3oYi + favi s

where

S0 2_#(1+gpbm'
f2l :;_Fz<l+gpbnc :_3?ﬁf30

The type of HB occurring at the critical time-delay can
be determined by using the center manifold theorem.
Specifically, the sign of the quantity L , where

L= %f 21 (39)
determined at the critical time-delay, defines the benign
flutter boundary (supercritical HB) and the catastrophic

(38a)
(38b)

one (subcritical HB), for the cases L<0 and L>0,
respectively. This implies that
f21 <0=g,. <0, supercritical HB (40a)
f51>0=g,, >0, subcritical HB (40b)
d,c =0 degenerated HB. (40c)

RESULTS AND DISCUSSION

The parameters for the simulation are presented in Table 1.

Table 1. Airfoils and flow parameters
1-DOF Plunging Airfoil

b=1ft p. =0.0318slugs/ft>
¢ =0.008 c=2mw¢
m =10 slugs/ft k=w’m
w, = 60rad/s Cro =27

In Fig. 1 the effect of the time delay on the first order
kernel is presented for selected values of the
proportional and velocity feedback gains and for
selected values of the dimensionless frequency w/w), ,

respectively. In Figs. 2 and 3, 3-D and contour plots of
the first and third order kernels with the variation of the
frequency and of the time delay are depicted for two
values of the proportional and velocity feedback gains
and two values of the time delay, respectively.

The stability chart of the aeroelastic system described
by Eq. (7) with respect to the feedback gains and the

time-delay is constructed using the second Stépan’s
second theorem and the D-subdivision method.

9,=9,= 104
— no delay

0.015

0.0125

0.01

He (o)

Time delay
©=0;0.01;0.02; 0.03; 0.04; 0.05; 0.06

= 0.0075
0.005

0.0025

0 20 40 60 80 100

Frequency, ®

0.012

0.01

0.008

0.006

H, ()

0.004

0.002

Time delay, T

Fig. 1 First order aeroelastic kernel. Effect of the time
delay. a) H; vs. @ . Influence of the time delay; b) H; vs.
7. Influence of the frequency.

The method of D-subdivision is applied for determining
the condition under which the quasi-polynomial D, (s)

has no p-zeros.

As remarked in Ref. [3], since the quasi-polynomial is a
continuous function of its parameters we can construct
the subdivision of the coefficient’s space by hyper-
surfaces, the points of which are quasi-polynomials with
at least one imaginary root. In addition, as it has been
proven in [12], with the variation of the quasi-
polynomial parameters the number of p-zeros may
change only by passage of some zeros through an
imaginary axis, and that for all points of every domain
of D-subdivision the number of quasi-polynomial p-
zeros will be the same.

The region in the {g,.g, | parameter space where the

roots of the characteristic equation of the system have
zero real part has been represented in Fig. 4 in which the
values of the geometrical parameters have been locked.

Other stability regions can be drawn in the {g o gv}

parameter space, but these are not of practical
importance. As clearly presented, the time-delays play
an important role. It is noted that the range of stability
for g, is much larger than that of g, , implying that the

stability boundary depends dramatically on the velocity
feedback gain, especially in the case of the time delay.
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9,=9,=1.0 -10%

HICL(O*))

HICL((D)

0 0.2 0.4 0.6 0.8 1
Time delay, T

Fig. 2 3-D and contour plots of the first order kernel. Variation of the frequency vs. time delay for two values of the
proportional and velocity feedback gains.
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Time delay, T = 0.1
9,=9,=25 -10*

40

Hi (07,05, 01)/9p

20

-20

-40

40

Time delay, T = 0.25
9,=9,=25 -10%

H3CL(Q)1 , Wy, ©1)/Tpe
40

20

-20

-40

Fig. 3 3-D and contour plots of the third order kernel. Variation of the frequency vs. the time delay for two values of
the time delay.
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In addition this implies that, in the presence of the
delays, a small variation in the velocity feedback gain
can expel the system from the stable domain to the
unstable domain. On the other hand, the stable
parameter space is the complete positive quadrant of
{g p,gv} parameter plane if no time delays are present,

independent of the values of the feedback gains.

10°
107 L.
T~ g,.< 0 Supercritical HB
9, LSB g,.> 0 Subcritical HB
81 Unstable domain \ Unstable domain
T =0.001 )
6 F ///
Stable domain 7 - »
N & e Auxiliary
4 N 0.002 > e lines (Taylor's
,,,,,, N2 ,/}(\;\“e series exp.)
N e O\
000347 [ (o _
2 e Unstable domain
0.004
‘ ‘ ‘ ‘ ‘ 10°
0 2 4 6 8 10 12

9y

Fig. 4 Stability charts of the full and approximate
(Taylor’s expansion) closed-loop delayed nonlinear
aeroelastic system.

Whereas the linear analyses are able to predict the
stability boundary, the nonlinear analyses provide an
insight on the character of the stability boundary. To
this purpose an auxiliary stability chart (see Fig. 4),
corresponding to the statement of Egs. (33), enables the
prediction of the type of Hopf-Bifurcation (i.e.
supercritical or subcritical HB). This auxiliary plot for
small time-delay, supplies full information related to the
HB but, due to the simplicity of the Taylor’s series
expansion used, provides other types of instability. For
this reason the auxiliary plot is used only to determine
the HB conditions and not the analytical examination of
the full nonlinear system.

10°
10|
9,.> 0 Subcritical HB

S .. _Hoptgifurcation -
P /nn the\surface

g,.< 0 Supercritical HB

St/z:\ble domain
7o VAN

S
S
B

<& Unstable domain

Fig. 5 3-D stability chart of the plunging airfoil.
Effect of the time delay and of the control gains.

On the basis of the HB condition and of Fig. 4, it can be
seen that the HB occurs on the 3-D surface of the
parametric domain depicted in Fig. 5. Therefore, if the
parameter point is situated in the inner domain, the
system is stable, and if the parameter point is in the
outer domain, the system reaches a stable or unstable
LCO if the nonlinear control gain is negative or
positive, respectively. In Fig. 6 the nonlinear closed-
loop aeroelastic responses of the 1-DOF airfoil for
d,. =—10 (implying a stable LCO, i.e a supercritical
HB) and g,. =10 (implying an unstable LCO, i.e. a
subcritical HB) are presented. These results, obtained
via both Volterra series and numerical in